Probabilidade é um conceito matemático, que agora se tornou uma disciplina completa e é uma parte vital da estatística. O experimento aleatório em probabilidade é um desempenho que gera um certo resultado, puramente baseado no acaso. Os resultados de um experimento aleatório são chamados de evento. Na probabilidade, existem vários tipos de eventos, como simples, composto, mutuamente exclusivo, exaustivo, independente, dependente, igualmente provável etc. Quando os eventos não podem ocorrer ao mesmo tempo, são chamados mutuamente exclusivos
Por outro lado, se cada evento não for afetado por outros eventos, eles serão chamados eventos independentes. Leia o artigo a seguir para entender melhor a diferença entre eventos independentes e mutuamente exclusivos.
Base para Comparação | Eventos mutuamente exclusivos | Eventos Independentes |
---|---|---|
Significado | Dizem que dois eventos são mutuamente exclusivos, quando sua ocorrência não é simultânea. | Diz-se que dois eventos são independentes, quando a ocorrência de um evento não pode controlar a ocorrência de outros. |
Influência | A ocorrência de um evento resultará na não ocorrência do outro. | A ocorrência de um evento não terá influência na ocorrência do outro. |
Fórmula matemática | P (A e B) = 0 | P (A e B) = P (A) P (B) |
Conjuntos no diagrama de Venn | Não se sobrepõe | Sobreposições |
Eventos mutuamente exclusivos são aqueles que não podem ocorrer simultaneamente, ou seja, onde a ocorrência de um evento resulta na não ocorrência do outro evento. Tais eventos não podem ser verdadeiros ao mesmo tempo. Portanto, a ocorrência de um evento torna impossível a ocorrência de outro evento. Estes também são conhecidos como eventos disjuntos.
Vamos dar um exemplo de lançamento de uma moeda, onde o resultado seria cabeça ou cauda. A cabeça e a cauda não podem ocorrer simultaneamente. Tomemos outro exemplo, suponha que, se uma empresa deseja comprar máquinas, para as quais possui duas opções, Máquinas A e B. A máquina com melhor relação custo-benefício e melhor produtividade, será selecionada. A aceitação da máquina A resultará automaticamente na rejeição da máquina B e vice-versa.
Como o nome sugere, eventos independentes são os eventos, nos quais a probabilidade de um evento não controla a probabilidade da ocorrência do outro evento. O acontecimento ou não acontecimento de tal evento não tem absolutamente nenhum efeito no acontecimento ou não de outro evento. O produto de suas probabilidades separadas é igual à probabilidade de ambos os eventos ocorrerem.
Vamos dar um exemplo, suponha que se uma moeda é lançada duas vezes, cauda na primeira chance e cauda na segunda, os eventos são independentes. Outro exemplo para isso: suponha que se um dado for lançado duas vezes, 5 na primeira chance e 2 na segunda, os eventos sejam independentes.
As diferenças significativas entre eventos mutuamente exclusivos e independentes são elaboradas conforme abaixo:
Portanto, com a discussão acima, é bastante claro que ambos os eventos não são iguais. Além disso, há um ponto a ser lembrado: se um evento é mutuamente exclusivo, não pode ser independente e vice-versa. Se dois eventos A e B são mutuamente exclusivos, eles podem ser expressos como P (AUB) = P (A) + P (B), enquanto se as mesmas variáveis forem independentes, eles podem ser expressos como P (A∩B) = P (A) P (B).